Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Liver Int ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623714

RESUMO

Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.

2.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587078

RESUMO

Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Ácidos e Sais Biliares , Colesterol/metabolismo , Glucose , Obesidade/metabolismo
3.
JHEP Rep ; 6(2): 100963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322420

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.

4.
N Engl J Med ; 390(6): 497-509, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38324483

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a progressive liver disease with no approved treatment. Resmetirom is an oral, liver-directed, thyroid hormone receptor beta-selective agonist in development for the treatment of NASH with liver fibrosis. METHODS: We are conducting an ongoing phase 3 trial involving adults with biopsy-confirmed NASH and a fibrosis stage of F1B, F2, or F3 (stages range from F0 [no fibrosis] to F4 [cirrhosis]). Patients were randomly assigned in a 1:1:1 ratio to receive once-daily resmetirom at a dose of 80 mg or 100 mg or placebo. The two primary end points at week 52 were NASH resolution (including a reduction in the nonalcoholic fatty liver disease [NAFLD] activity score by ≥2 points; scores range from 0 to 8, with higher scores indicating more severe disease) with no worsening of fibrosis, and an improvement (reduction) in fibrosis by at least one stage with no worsening of the NAFLD activity score. RESULTS: Overall, 966 patients formed the primary analysis population (322 in the 80-mg resmetirom group, 323 in the 100-mg resmetirom group, and 321 in the placebo group). NASH resolution with no worsening of fibrosis was achieved in 25.9% of the patients in the 80-mg resmetirom group and 29.9% of those in the 100-mg resmetirom group, as compared with 9.7% of those in the placebo group (P<0.001 for both comparisons with placebo). Fibrosis improvement by at least one stage with no worsening of the NAFLD activity score was achieved in 24.2% of the patients in the 80-mg resmetirom group and 25.9% of those in the 100-mg resmetirom group, as compared with 14.2% of those in the placebo group (P<0.001 for both comparisons with placebo). The change in low-density lipoprotein cholesterol levels from baseline to week 24 was -13.6% in the 80-mg resmetirom group and -16.3% in the 100-mg resmetirom group, as compared with 0.1% in the placebo group (P<0.001 for both comparisons with placebo). Diarrhea and nausea were more frequent with resmetirom than with placebo. The incidence of serious adverse events was similar across trial groups: 10.9% in the 80-mg resmetirom group, 12.7% in the 100-mg resmetirom group, and 11.5% in the placebo group. CONCLUSIONS: Both the 80-mg dose and the 100-mg dose of resmetirom were superior to placebo with respect to NASH resolution and improvement in liver fibrosis by at least one stage. (Funded by Madrigal Pharmaceuticals; MAESTRO-NASH ClinicalTrials.gov number, NCT03900429.).


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Piridazinas , Uracila , Adulto , Humanos , Método Duplo-Cego , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Piridazinas/uso terapêutico , Resultado do Tratamento , Uracila/análogos & derivados , Receptores beta dos Hormônios Tireóideos/agonistas , Biópsia , Relação Dose-Resposta a Droga
6.
J Clin Transl Hepatol ; 11(6): 1377-1386, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37719967

RESUMO

Background and Aims: Most data on liver assessment in type 2 diabetes mellitus (T2DM) patients are from retrospective cohorts with selection bias. We aimed at appraising the feasibility, results, and benefits of an outpatient systematic noninvasive screening for metabolic dysfunction-associated fatty liver disease (MAFLD) severity and determinants in T2DM patients. Methods: We conducted a 50-week cross-sectional study enrolling adult T2DM outpatients from a diabetes clinic. An algorithm based on guidelines was applied using simple bioclinical scores and, if applicable, ultrasound and/or elastometry. Results: Two hundred and thirteen patients were included. Mean age and body mass index were 62 years and 31 kg/m2 and 29% of patients had abnormal transaminase levels. The acceptance rate of additional liver examinations was 92%. The prevalence of MAFLD, advanced fibrosis and cirrhosis was 87%, 11%, and 4%, respectively. More than half of the cases of advanced fibrosis had not been suspected and were detected by this screening. MAFLD was associated with poor glycemic control, elevated transaminases, low HDL-C and the absence of peripheral arterial disease. Advanced fibrosis was linked to high waist circumference and excessive alcohol consumption, which should be interpreted with caution owing to the small number of patients reporting excessive consumption. Conclusions: Simple bioclinical tools allowed routine triage of T2DM patients for MAFLD severity, with high adherence of high-risk patients to subsequent noninvasive exams.

7.
Clin Res Hepatol Gastroenterol ; 47(8): 102194, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567467

RESUMO

As life expectancy of liver transplanted patients improves, new questions are arising to avoid progressive graft loss. The spectrum of chronic inflammation and fibrosis are known to be important triggers in the alteration of graft function. Liver biopsy remains the gold standard to better understand progressive, normal, and abnormal histological modifications of the graft. In parallel, the interest for metabolic steatosis development in post-transplantation is also growing. Long-term survival of these patients involves the management of comorbidities including metabolic syndrome and cardiovascular diseases. Early detection of altered graft parenchyma, and monitoring of its evolution are undoubtedly essential. Non-invasive methods including transient elastography and fibrosis biomarkers are attractive tools to avoid drawbacks and complications of liver biopsy. Accuracy of these methods are well-known in a pre-transplantation setting, but evidence is lacking in post-transplantation setting. We review current knowledge of progressive liver fibrosis and steatosis development after transplantation and non-invasive methods of their assessment.


Assuntos
Técnicas de Imagem por Elasticidade , Fígado Gorduroso , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Fibrose , Fígado Gorduroso/patologia , Inflamação/complicações , Técnicas de Imagem por Elasticidade/métodos , Biópsia/efeitos adversos , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Cirrose Hepática/patologia
8.
Stem Cell Reports ; 18(8): 1555-1572, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37557073

RESUMO

This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.


Assuntos
Hepatopatias , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Hepatopatias/terapia , Hepatopatias/metabolismo , Fígado/metabolismo , Hepatócitos
10.
J Cachexia Sarcopenia Muscle ; 14(3): 1569-1582, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127348

RESUMO

BACKGROUND: The aryl hydrocarbon receptor (AHR) is expressed in the intestine and liver, where it has pleiotropic functions and target genes. This study aims to explore the potential implication of AHR in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. Specifically, we tested the hypothesis that targeting AHR can alleviate cachectic features, particularly through the gut-liver axis. METHODS: AHR pathways were explored in multiple tissues from four experimental mouse models of cancer cachexia (C26, BaF3, MC38 and APCMin/+ ) and from non-cachectic mice (sham-injected mice and non-cachexia-inducing [NC26] tumour-bearing mice), as well as in liver biopsies from cancer patients. Cachectic mice were treated with an AHR agonist (6-formylindolo(3,2-b)carbazole [FICZ]) or an antibody neutralizing interleukin-6 (IL-6). Key mechanisms were validated in vitro on HepG2 cells. RESULTS: AHR activation, reflected by the expression of Cyp1a1 and Cyp1a2, two major AHR target genes, was deeply reduced in all models (C26 and BaF3, P < 0.001; MC38 and APCMin/+ , P < 0.05) independently of anorexia. This reduction occurred early in the liver (P < 0.001; before the onset of cachexia), compared to the ileum and skeletal muscle (P < 0.01; pre-cachexia stage), and was intrinsically related to cachexia (C26 vs. NC26, P < 0.001). We demonstrate a differential modulation of AHR activation in the liver (through the IL-6/hypoxia-inducing factor 1α pathway) compared to the ileum (attributed to the decreased levels of indolic AHR ligands, P < 0.001), and the muscle. In cachectic mice, FICZ treatment reduced hepatic inflammation: expression of cytokines (Ccl2, P = 0.005; Cxcl2, P = 0.018; Il1b, P = 0.088) with similar trends at the protein levels, expression of genes involved in the acute-phase response (Apcs, P = 0.040; Saa1, P = 0.002; Saa2, P = 0.039; Alb, P = 0.003), macrophage activation (Cd68, P = 0.038) and extracellular matrix remodelling (Fga, P = 0.008; Pcolce, P = 0.025; Timp1, P = 0.003). We observed a decrease in blood glucose in cachectic mice (P < 0.0001), which was also improved by FICZ treatment (P = 0.026) through hepatic transcriptional promotion of a key marker of gluconeogenesis, namely, G6pc (C26 vs. C26 + FICZ, P = 0.029). Strikingly, these benefits on glycaemic disorders occurred independently of an amelioration of the gut barrier dysfunction. In cancer patients, the hepatic expression of G6pc was correlated to Cyp1a1 (Spearman's ρ = 0.52, P = 0.089) and Cyp1a2 (Spearman's ρ = 0.67, P = 0.020). CONCLUSIONS: With this set of studies, we demonstrate that impairment of AHR signalling contributes to hepatic inflammatory and metabolic disorders characterizing cancer cachexia, paving the way for innovative therapeutic strategies in this context.


Assuntos
Interleucina-6 , Neoplasias , Camundongos , Animais , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias/metabolismo
12.
Front Nutr ; 9: 1051157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466421

RESUMO

Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease in the world. Progression toward non-alcoholic steatohepatitis (NASH) is associated with alterations of skeletal muscle. One plausible mechanism for altered muscle compartment in liver disease is changes in ammonia metabolism. In the present study, we explored the hypothesis that NASH-associated hyperammonemia drives muscle changes as well as liver disease progression. Materials and methods: In Alms1-mutant mice (foz/foz) fed a 60% fat diet (HFD) for 12 weeks; we investigated hepatic and muscular ammonia detoxification efficiency. We then tested the effect of an 8 week-long supplementation with L-ornithine L-aspartate (LOLA), a known ammonia-lowering treatment, given after either 4 or 12 weeks of HFD for a preventive or a curative intervention, respectively. We monitored body composition, liver and muscle state by micro computed tomography (micro-CT) as well as muscle strength by four-limb grip test. Results: According to previous studies, 12 weeks of HFD induced NASH in all foz/foz mice. Increase of hepatic ammonia production and alterations of urea cycle efficiency were observed, leading to hyperammonemia. Concomitantly mice developed marked myosteatosis. First signs of myopenia occurred after 20 weeks of diet. Early LOLA treatment given during NASH development, but not its administration in a curative regimen, efficiently prevented myosteatosis and muscle quality, but barely impacted liver disease or, surprisingly, ammonia detoxification. Conclusion: Our study confirms the perturbation of hepatic ammonia detoxification pathways in NASH. Results from the interventional experiments suggest a direct beneficial impact of LOLA on skeletal muscle during NASH development, though it does not improve ammonia metabolism or liver disease.

13.
World J Gastroenterol ; 28(40): 5807-5817, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36353207

RESUMO

Liver transplantation (LT) is currently the only curative treatment option for selected patients with end stage liver disease or hepatocellular carcinoma. Improving waiting list-mortality, post-transplant morbidity and mortality and refining the selection of the patients remain our current central objectives. In this field, different concepts dealing with nutrition and the muscle such as sarcopenia, malnutrition, frailty or myosteatosis have emerged as possible game changers. For more than a decade, many prospective studies have demonstrated that sarcopenia and frailty are major predictive factors of mortality in the waiting list but also after LT. Malnutrition is also a well-known risk factor for morbidity and mor-tality. Muscle composition is a newer concept giving insight on muscle quality which has also been shown to be linked to poorer outcomes. Each of these terms has a precise definition as well as pathophysiological mechanisms. The bi-directional liver-muscle axis makes sense in this situation. Defining the best, easy to use in clinical practice tools to assess muscle quality, quantity, and function in this specific population and developing quality prospective studies to identify interventional strategies that could improve these parameters as well as evaluate the effect on mortality are among the important challenges of today.


Assuntos
Fragilidade , Transplante de Fígado , Desnutrição , Sarcopenia , Humanos , Transplante de Fígado/efeitos adversos , Estudos Prospectivos , Cirrose Hepática/complicações , Listas de Espera , Prognóstico , Desnutrição/diagnóstico , Desnutrição/etiologia , Desnutrição/epidemiologia , Músculos
14.
Metabolites ; 12(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36355106

RESUMO

Hepatokines (liver secreted proteins with possible distant action) are emerging potential players in insulin resistance in type 2 diabetic patients. Here, we explored the effect of a high-fat diet on the expression of fetuin-A, one of those candidate liver proteins, and its relationship with liver macrophage activation. Mice were fed a normal diet or a high-fat diet for 3 days, known to initiate steatosis and liver insulin resistance. A preventive liver macrophage depletion was obtained by intravenous injection of clodronate-loaded liposomes. The mRNA and protein expression of fetuin-A was evaluated by qPCR, Western blot and immunofluorescence on different insulin-sensitive tissues (liver, adipose tissue, and muscle). Short-term high-fat diet-induced steatosis, liver macrophage activation, and hepatic insulin resistance together with a significantly increased expression of liver AHSG (α2-HS glycoprotein/fetuin-A) mRNA and serum fetuin-A concentration. On immunofluorescence, fetuin-A was mostly expressed in centrilobular hepatocytes. This increase in fetuin-A under high-fat diet was not evidenced in other peripheral insulin-sensitive tissues (skeletal muscle and adipose tissue). The mRNA expression of α2-HS glycoprotein was 800 times higher within the liver compared with the adipose tissue or the muscle. Liver macrophage depletion that significantly ameliorated insulin sensitivity was associated with a significant decrease in α2-HS glycoprotein mRNA expression. In conclusion, this study demonstrated liver fetuin-A overexpression at the initiation of high-fat diet feeding, concurrent with hepatic steatosis and insulin resistance. Targeting liver macrophages in this setting reduced liver α2-HS glycoprotein expression suggesting that fetuin-A acts as an hepatokine with proinsulin resistance effects.

15.
J Clin Med ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36233559

RESUMO

The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.

16.
Cells ; 11(17)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36078124

RESUMO

Numerous studies show a modification of the gut microbiota in patients with obesity or diabetes. Animal studies have also shown a causal role of gut microbiota in liver metabolic disorders including steatosis whereas the human situation is less clear. Patients with metabolic dysfunction associated fatty liver disease (MAFLD) also have a modification in their gut microbiota composition but the changes are not fully characterized. The absence of consensus on a precise signature is probably due to disease heterogeneity, possible concomitant medications and different selection or evaluation criteria. The most consistent changes were increased relative abundance of Proteobacteria, Enterobacteriaceae and Escherichia species and decreased abundance of Coprococcus and Eubacterium. Possible mechanisms linking the microbiota and MAFLD are increased intestinal permeability with translocation of microbial products into the portal circulation, but also changes in the bile acids and production of microbial metabolites such as ethanol, short chain fatty acids and amino acid derivatives able to modulate liver metabolism and inflammation. Several interventional studies exist that attempt to modulate liver disease by administering antibiotics, probiotics, prebiotics, synbiotics, postbiotics or fecal transplantation. In conclusion, there are both gaps and hopes concerning the interest of gut microbiome evaluation for diagnosis purposes of MAFLD and for new therapeutic developments that are often tested on small size cohorts.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Probióticos , Simbióticos , Animais , Transplante de Microbiota Fecal , Humanos , Probióticos/uso terapêutico
17.
Aliment Pharmacol Ther ; 56(6): 1055-1070, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35919965

RESUMO

BACKGROUND: Intestinal T cells are key in gut barrier function. Their role in early stages of alcohol-associated liver disease (ALD) remain unknown. AIM: To explore the links between intestinal T cells, microbial translocation and ALD METHODS: Patients with alcohol use disorder (AUD) following a rehabilitation programme were compared to subjects with non-alcoholic fatty liver disease (NAFLD) and healthy controls. Clinical and laboratory data (liver stiffness, controlled attenuation parameter, AST, ALT, K18-M65) served to identify AUD patients with isolated steatosis (minimal liver disease) or steatohepatitis/fibrosis (ALD). Serum microbial translocation markers were measured by ELISA, duodenal and plasma levels of sphingolipids by targeted LC-MS. T lymphocytes in duodenal biopsies were characterised by immunohistochemistry, flow cytometry and RNA sequencing on FACS-sorted cells. Mechanisms for T-cell alterations were assessed in vitro. RESULTS: Patients with ALD, but not those with minimal liver disease, showed reduced numbers of duodenal CD8+ T resident memory (TRM) cells compared to controls or patients with NAFLD. TRM transcriptomic analysis, in vitro analyses and pharmacological inhibition of cathepsin B confirmed TRM apoptosis driven by lysosomal membrane permeabilisation and cathepsin B release into the cytosol. Altered lipid metabolism and increased duodenal and plasma sphingolipids correlated with apoptosis. Dihydroceramide dose-dependently reduced viability of TRM. Duodenal TRM phenotypic changes, apoptosis and transcriptomic alterations correlated with increased levels of microbial translocation markers. Short-term abstinence did not reverse TRM cell death in patients with ALD. CONCLUSIONS: Duodenal CD8+ TRM apoptosis related to functional changes in lysosomes and lipid metabolism points to impaired gut adaptive immunity specifically in patients with AUD who developed early ALD.


Assuntos
Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Apoptose , Biomarcadores/análise , Linfócitos T CD8-Positivos/química , Catepsina B , Humanos , Esfingolipídeos
18.
Metabolites ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888749

RESUMO

Fetuin-A, a plasma multifunctional protein known to play a role in insulin resistance, is usually presented as a liver secreted protein. However, fetuin-A adipose tissue production has been also described. Here, we evaluated fetuin-A production by the liver and the adipose tissue during metabolic dysfunction-associated fatty liver disease (MAFLD)-non-alcoholic steatohepatitis (NASH) development. Fetuin-A was evaluated by enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), Western blot, and immunofluorescence in male foz-/- mice fed a normal diet (ND) or a high fat diet (HFD) at various timepoints and in MAFLD-NASH patients. Foz-/- mice fed a short-term HFD developed liver steatosis, insulin resistance, and increased circulating levels of fetuin-A compared to ND-fed mice. In mice and patients with NASH, fetuin-A was located not only in healthy or steatotic hepatocytes but also in some macrophages forming lipogranulomas. In both mice and humans, a significant amount of fetuin-A was present in the adipose tissue compared to the liver. However, messenger ribonucleic acid levels and cell culture experiments indicate that fetuin-A is produced by the liver but not by the adipose tissue. In conclusion, fetuin-A is produced by steatotic hepatocytes at early timepoints in MAFLD and correlates with insulin resistance both in mice and humans. In NASH, fetuin-A also co-localizes with activated liver macrophages and could be interpreted as a signal released by damaged hepatocytes.

19.
BMC Med ; 20(1): 110, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35351144

RESUMO

BACKGROUND: Dietary interventions targeting the gut microbiota have been proposed as innovative strategies to improve obesity-associated metabolic disorders. Increasing physical activity (PA) is considered as a key behavioral change for improving health. We have tested the hypothesis that changing the PA status during a nutritional intervention based on prebiotic supplementation can alter or even change the metabolic response to the prebiotic. We confirm in obese subjects and in high-fat diet fed mice that performing PA in parallel to a prebiotic supplementation is necessary to observe metabolic improvements upon inulin. METHODS: A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in obese participants who received 16 g/day native inulin versus maltodextrin, coupled to dietary advice to consume inulin-rich versus -poor vegetables for 3 months, respectively, in addition to dietary caloric restriction. Primary outcomes concern the changes on the gut microbiota composition, and secondary outcomes are related to the measures of anthropometric and metabolic parameters, as well as the evaluation of PA. Among the 106 patients who completed the study, 61 patients filled a questionnaire for PA before and after intervention (placebo: n = 31, prebiotic: n = 30). Except the dietitian (who provided dietary advices and recipes book), all participants and research staff were blinded to the treatments and no advices related to PA were given to participants in order to change their habits. In parallel, a preclinical study was designed combining both inulin supplementation and voluntary exercise in a model of diet-induced obesity in mice. RESULTS: Obese subjects who increased PA during a 3 months intervention with inulin-enriched diet exhibited several clinical improvements such as reduced BMI (- 1.6 kg/m2), decreased liver enzymes and plasma cholesterol, and improved glucose tolerance. Interestingly, the regulations of Bifidobacterium, Dialister, and Catenibacterium genera by inulin were only significant when participants exercised more. In obese mice, we highlighted a greater gut fermentation of inulin and improved glucose homeostasis when PA is combined with prebiotics. CONCLUSION: We conclude that PA level is an important determinant of the success of a dietary intervention targeting the gut microbiota. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03852069 (February 22, 2019 retrospectively registered).


Assuntos
Inulina , Obesidade , Animais , Índice de Massa Corporal , Dieta Hiperlipídica , Exercício Físico , Humanos , Inulina/farmacologia , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA